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Cp-containing @ bis(silyl) complexes CiM(SiRs), have been

Receied December 28, 1998  reportedi® Formation of Cp-free Yimetal polysilyl and persilyl
- ) ) ) ) complexes remains a considerable synthetic challenge. In this
Early-transition-metal silyl chemistry has drawn increasing paper, we report the syntheses and characterization of, to our
attention in the past decadi@he studies in this area have revealed knowledge, the first Cp-free®dis(silyl) complexes [Li(THF)-
that @ metal silyl bonds are very reactive, and can undergo [(Me,N),Zr(SiPhBUY),] (1) and (MeN);Ta[Si(SiMe)i], (2) as
insertion reactiorfsand catalyze the dehydropolymerization of \yel| as the study of a novel silyl exchange between AN)gZr—
organosilane$? However, most @imetal silyl complexes contain  gjR, and SiR;~ anions.
cyclopentadienyl (Cp) or analogous anionidigands; few Cp- The anionic bis(silyl) compleg was prepared by the addition
free @ metal silyl complexes hav_e been reported® We have of Li(THF)sSiBUPh!! to (Me:N)sZr(SiPhBU) (3)12 in toluene
recently prepared and characterized a new class of Cp-free d from which 1 crystallizes at room temperature (ScheméT)is
silyl alkyl, alkylidene, alkylidyne, and amide or related com-  thermally unstable in solution but may be stored indefinitely as
plexest HO\‘I‘VEVEI‘, attempts to ,:,synthe5|ze Cp-free bis(silyl) 4 solid at—20 °C. There is a sharp NMesignal in *H and
complexes "(RCHM[Si(SiMe)ql2" [R = CMes, SiMe;; M = 13c{14} NMR spectra ofl at room temperature. However, both
Ti, Zr] and “(MesSiO)ZI(SiRy)," [SiRs = Si(SiMey)s, SiPhBU]* H and3C{*H} NMR peaks of the Bugroups inl are broad at
have been unsuccessful; reductive elimination of organodisilanes;oom temperature. Upon cooling to°@, the H and 13C{ 1H}
were often observed. Although Cp-fre@ mietal polyalkyl and NMR resonances for the Bgroups of SiPsBut ligands in1
peralkyl complexes such as (RgkM (n = 4, M = Ti triad; n resolve into two separate broad signals which are close to those
=5 M= Tan=6 M= W) have been known for a long  of (Vie,N)szr(SiPhBu) (3) and Li(THF)SiPhBUL. This indicates
time? no & silyl analogues (polysilyl and persilyl complexes) hat the SiPkBUt ligand in 3 is in rapid exchange with Li-
have been isolatetf? An early reported tetrasilyl complex Ti- (THF);SiPRBU in solution at room temperature (Scheme 1). The
(SiPhy)s" was found later to be Ti(OSiB.° To date only afew  gynamic NMR of this exchange reaction has been studied; the
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Figure 1. ORTEP drawing of the bis(silyl) anion ifh showing 35%

probability ellipsoids. Selected bond distances (A) and angles (deg): Zr-

(1)-Si(1) 2.9331(14), Zr(}N(1) 2.039(3), Zr(1¥N(2) 2.063(5), Si-
(1)-2Zr(1)-Si(1A) 177.93(5), N(1} Zr(1)—N(2) 120.88(12), N(1} Zr(1)—
N(1A) 118.2(2).

comparison, the central MNmoieties in hexacoordinated
M(NMey)eLio(THF), (M = Zr, Mo), adducts between M(NMp
and LiNMe, in THF, approach an octahedral geométrythe
trans angle SiZr—Si [177.93(5)] in 1is near 180. The Zr—N
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Scheme 2
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Rs = Ph,But, R'3 = (SiMey)s; Keq = 82.83(0.02) at 20 °C
AHP =-4.6(0.5) kcal/mol, AS® =-7(2) eu
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there are few such studies involving &rdetal center. The silyl
exchange as shown in Scheme 2 likely proceeds through an
associative ligand substitution mechanism involving a pentaco-
ordinated anionic bis(silyl) intermediag& Although5 was not
directly observed, the observation and isolation of its analdgue
in the silyl exchange shown in Scheme 1 strongly support the

bond distances of 2.039(3) and 2.063(5) A are close to those foundassociative mechanism in Schemei 2to our knowledge, is one

in 3[2.021(4) A] and (MeN)sZr—Si(SiMey); [4, 2.018(7) A]:2
The Zr—Si bond length of 2.9331(14) A it represents, to our
knowledge, the longest reported-Z8i bond!®” Other known
Zr—Si bond lengths are in the range 2.7212)860(2) A6.17

of the rare examples of an isolated intermediate in associative
(or S\2) ligand-substitution reactions.

The tantalum bis(silyl) complex (MB)s;Ta[Si(SiMe&)3]2 (2),
a neutral analogue df, was prepared by the reaction shown in

This is perhaps mainly the result of the strong trans-influence of Scheme 3220 The 'H and **C{*H} NMR spectra of2 display

silyl groups inl. For late-transition-metal complexes, silyl ligands
are among the ligands with the strongest trans-influéh&geric
factors might play a role in the ZSi bond elongation il as
well, since the ZrN bonds inl are slightly longer than other
known Zr—N bonds.

The NMR evidence of the silyl exchange between {Ng-
Zr(SiPhBW) (3) and Li(THF):SiBuPh, through the pentacoor-
dinated intermediat& prompted us to further study this exchange.
When Li(THF)}SiBUuPh, was added to a solution of (MM)sZr—
Si(SiMey)s (4), 3 and Li(THF)}SIi(SiMe;); were observed in the
reaction solution (Scheme 2¢qat 20°C was found to be 82.83-
(2) in favor of 3 and Li(THF)SIi(SiMe;)s. A linear fit of In Keq
vs 1T gave AH®° = —4.6(5) kcal/mol andAS’® = —7(2) eu
between—10(1) and 20(1yC.12 It is interesting to note that the
preference foB s in contrast to the relative stabilities of (Rg)kt
Zr—Si(SiMey); and “(RCH,):Zr—SiBuPh,"; the former is stable

only one set of resonances for the silyl and amide ligands between
—60 and 27°C. This suggests th@tadopts a trigonal bipyramidal
structure similar to that of with two Si(SiMe); ligands in axial
positions (Scheme 32 is thermally stable at room temperature
under nitrogen, but crystals @fwere found to decay rapidly under
X-ray irradiation, precluding attempts to confirm the structure of
2 by X-ray crystallography. In the preparation2by the reaction
shown in Scheme 3, a monosilyl intermediate {MgTa[Si-
(SiMes)5]ClI (6) was observed and isolatétiThe structure 06,2

as determined by X-ray crystallography, shows that the complex
adopts a trigonal bipyramidal geometry with an amide and the
chloride ligand in axial positions. There are two NMesonances

in a 2:1 ratio in the'H NMR spectra of6 at 23 °C, indicating

that the equatorial and axial amide ligands either do not exchange
or exchange slowly on NMR time scale.
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